# TROFODINÁMICA DEL BACALAO DE PROFUNDIDAD **COMBINANDO ISÓTOPOS ESTABLES Y CONTENDS** ESTOMACALES.

## SEB. KLARIAN. MSC. PHD

SUBPESCA-IFOP: SEGUIMIENTO DE RECURSOS DEMERSALES, TEMPORADA DE PESCA AÑO 2013



## TROFODINAMICA



Jurado-Molina et al. 2016



## MÉTODOS EN TROFODINÁMICA





## ENTENDIENDO SIA EN ECOLOGÍA TRÓFICA







**HISTORIA DE VIDA** 











### ENTENDIENDO SIA EN ECOLOGÍA TRÓFICA



## EJEMPLOS



δ13C‰

δ13C‰



## JIBIA













Dissostichus eleginoides

# 2011 2012 2013 2014 2015 2 años





## ALIMENTACIÓN



MURILLO ET AL. 2008









Available online at www.sciencedirect.com



Geochimica et Cosmochimica Acta 71 (2007) 87-94

#### Oxygen and carbon stable isotopes in otoliths record spatial isolation of Patagonian toothfish (*Dissostichus eleginoides*)

Julian Ashford \*, Cynthia Jones



Fig. 2. Stable isotope values found in whole otoliths of Patagonian toothfish captured off the Patagonian Shelf and South Georgia ( $n_{PS} = 22$ ,  $n_{\rm SG} = 21$ ).

## 018/C13

#### Geochimica

www.elsevier.com/locate/gca





## ;QUE?



**Research Article** 

### ¿Las áreas de filtración de metano constituyen zonas de agregación del bacalao de profundidad (*Dissostichus eleginoides*) frente a Chile central?

Javier Sellanes<sup>1, 2\*</sup>, Milton J. Pedraza-García<sup>3,4</sup> & Germán Zapata-Hernández<sup>1</sup>

### New insights on the trophic ecology of bathyal communities from the methane seep area off Concepción, Chile (~36° S)

Germán Zapata-Hernández<sup>1</sup>, Javier Sellanes<sup>1,2</sup>, Andrew R. Thurber<sup>3</sup>, Lisa A. Levin<sup>4</sup>, Frédéric Chazalon<sup>5</sup> & Peter Linke<sup>6</sup>





Marine Ecology. ISSN 0173-9565



## OBJETIVO



## ANALIZAR LA ALIMENTACIÓN Y DETERMINAR LA TASA DE CONSUMO DEL BACALAO DE PROFUNDIDAD, MEDIANTE ANÁLISIS ESTOMACALES E ISÓTOPOS ESTABLES EN LA ZONA DEL PACIFICO SUR AUSTRAL

# MATERIALES Y MÉTODOS

#### 998 SCA









#### **100 BACALAOS** +**51 PRESAS**



#### CONGELADAS –20° SCA; 80° SIA – UNAB –





#### Análisis de datos

- Importancia de la presa; %PSIRI
- PERMANOVA
- W test Zar (1999)

#### Consumo alimento SCA

- Alimentacion frecuente Elliot & Persson (1978)
- Alimentacion intermitente Diana (1979)





#### Lab. work - UNAB -





#### ~10 MG; EX. LÍPIDOS (C:M 2:1) HUSSEY ET AL (2010)

**0.4–0.6 MG** LOPEZ ET AL. (2013)

#### 13C, 15N, %CN; STANDARD: PEE DEE BELEMITA 13C Y N ATMOSFÉRICO 15N





#### Analisis de datos

- MixSIAR, MCMC Stock & Semmens et al. (2013)
- Agrupacion de presas Fry (2013)
- A priori (SCA), a Klarian et al (unpublished)
- ANOVA

#### **Consumo alimento SIA**

• Balance enegertico - SIA Inger et al. (2006)





# RESULTADOS

#### **PRUEBAS; DIAGNÓSTICOS Y LÍPIDOS**









## **RESULTADOS SCA**



### Vacios Llenos





| ltem     | Ν   | W       | FO  | PSIRI | %PSIRI |
|----------|-----|---------|-----|-------|--------|
| Morids   | 66  | 6440    | 50  | 97.7  | 16.6   |
| Hakes    | 55  | 7879    | 53  | 143.4 | 24.3   |
| Rattails | 19  | 4981    | 19  | 262.2 | 44.4   |
| Shrimp   | 8   | 190     | 7   | 23.8  | 4.0    |
| Squids   | 51  | 3199.8  | 48  | 62.9  | 10.7   |
| Total    | 199 | 22689.8 | 177 | 589.9 | 100    |

## CAT. MAYORES





| Species                                             | Group                 | δ <sup>15</sup> N ‰ | δ <sup>13</sup> C ‰ | n   |
|-----------------------------------------------------|-----------------------|---------------------|---------------------|-----|
| Dissostichus elegoniodes                            | Patagonian tooth-fish | 18.30 ± 1.89        | -16.88 ± 1.89       | 100 |
| Gonatus antarcticus<br>Onykia ingens                | Squids                | 10.41 ± 2.23        | $-18.09 \pm 2.13$   | 14  |
| Campylonotus semistriatus<br>Acanthephyra carinata  | Shrimp                | 10.98 ± 2.90        | -18.91 ± 2.68       | 6   |
| Macrourus carinatus<br>Coelorinchus fasciatus       | Rattails              | 15.89 ± 1.76        | $-16.24 \pm 1.71$   | 8   |
| Antimora rostrata<br>Notophycis marginata           | Morids                | 13.85 ± 2.97        | -16.66 ± 1.60       | 14  |
| Micromesistius australis<br>Macruronus magellanicus | Hakes                 | 14.84 ± 2.13        | $-15.95 \pm 1.31$   | 9   |
|                                                     |                       |                     | Total               | 151 |

### **BI-PLOT BACALAO**



### **BI-PLOT POBLACIÓN ESTUDIADA**



## DIETA -SIA-



## DIFERENCIACIÓN ONTOGENICA



#### Tukey Simultaneous Tests for Differences of Means

| raitoy onnaitariot   |                     |                  |                  |         |                  | Difference of Levels  | Difference of Means | SE of Difference | 95% CI            | T-Value | Adjusted P- |
|----------------------|---------------------|------------------|------------------|---------|------------------|-----------------------|---------------------|------------------|-------------------|---------|-------------|
| Difference of Levels | Difference of Means | SE of Difference | 95% CI           | T-Value | Adjusted P-Value | G2-G1                 | 0.4560              | 0.2623           | (-0.0647, 0.9766) | 1.74    | 0.          |
| G2-G1                | 2.7386              | 0.2622           | (2.2182, 3.2590) | 10.44   | <0.0001          | Individual confidence | level = 95.00%      |                  |                   |         |             |

Individual confidence level = 95.00%

| Tukey S | Simultaneous | Tests for | Differences | of Means |
|---------|--------------|-----------|-------------|----------|
|---------|--------------|-----------|-------------|----------|





## **CONSUMO DE ALIMENTO**





## DISCUSIÓN

- Número de estómagos fue suficiente para estudiar la dieta del bacalao 0
- SCA SIA concuerdan con los reportes anteriores  $\bigcirc$
- Existen diferencias ontogeneticas a través del nitrógeno, pero no en su proporción dietaria  $\bigcirc$
- la tasa de consumo de bacalao se ajusta a las de un depredador de alimentación intermitente. O
- Similar consumo con otros depredadores de aguas profundas (2-5%). 0

0 O18).

Mirando hacia el futuro: integración de la composición energética de las presas - mediciones en estructuras duras (d13C,d15N y