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Abstract.
In this manuscript we investigate the long-term behavior of a single-species fishery, which is harvested by

several fleets. The time evolution of this population is modeled by a discrete time stochastic age-structured
model. We assume that incertitude only affects the recruitment. First, for the deterministic version of this
model, we characterize the equilibrium yields in terms of the fishing mortality. Then, for the stochastic
version, we introduce the concepts of maximum expected, log expected and harmonic expected sustainable
yield, and we analyze how the incertitude affects the behavior of these yields and their stationary distribution.
All the numerical simulations are performed with data obtained from Patagonian Tooth-fish fishery, which
is harvested by four different type of fleets: Chilean Industrial fleet, Chilean Artisanal fleet, Argentinean
longline fleet, and Argentinean Artisanal fleet.

1 Introduction
Age-structured fish population dynamics models are ubiquitous around the world for integrating the diverse
sources of information available with key parameters for describing the factors affecting the dynamics, in-
cluding natural and fishing mortality and reproduction, along with the fishing process [17]. The basis of
these models is a deterministic, linear Leslie matrix formulation [3, 6, 10, 13]. For biological realism, two
modifications are useful: (1) nonlinear dynamics during the early life history stage to obtain equilibrium or
sustainability, and (2) stochastic variation in early life survival to account for the large amount of uncertainty
due to environmental conditions.

∗This work was achieved while the first author was at Departamento de Ingeniería Matemática and Centro de Modelamiento
Matemático (UMI CNRS 2807), Universidad de Chile, Beauchef 851, Santiago, Chile
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Stochastic variability in fish population models due to recruitment has already been studied in [1, 5, 7,
9, 10, 19]. [10] study the sensitivity of a age-structured model with respect to noise in general form, by
means of Fourier analysis. In [19] a discrete time non-linear stochastic age-structured population model
without plus group is studied, and equations for approximations of the first and second moments of each
age-group are obtained, in order to obtain the steady state variances of the recruitment and yield. A
similar analysis is carried out in [5], with two main differences: first, the model considers a plus group;
secondly, each year is splitted into two seasons: during harvesting season the model is given by an ordinary
differential equation (ODE), and during spawning season the model is given by a discrete time equation.
Approximate and explicit expressions for the first and second moments of each age-group are obtained.
A more practical approach is carried out in [7], where the authors perform Monte-Carlo simulations of a
stochastic age-structured model with a Ricker spawner-recruitment function to estimate the long term mean
yield, for three different fisheries, and conclude that the maximum expected sustainable yield in all the
studied fisheries decreases as the coefficient of variation (CV ) of recruitment increases (considering a range
for CV from 0 to 200%.). [1] considers a model similar to [19], with the addition of a plus group, Baranov
catches, and a Beverton-Holt spawner-recruitment function with multiplicative log-normal noise (without
correction for bias), and performs Monte-Carlo simulations of the obtained model in order to generate short-
term stochastic projections for different constant values of fishing mortalities given by biological reference
points. Nevertheless, explicit expressions for the equilibrium distribution are not developed in any of the
previously cited works.

Regarding risk measures, [23] studies the effects of stochasticity in the optimization of harvesting control
rules, and shows the convenience of considering the arithmetic, geometric, and harmonic mean yields as
indicators of the state of the catch. According to [23], these quantities are related to the attitude towards
risk from the point of view of an agent that needs to design fishing control policies. For example, a limit
control rule might be defined by the decision-theoretic optimum derived under a risk-neutral stance, while a
target control rule might be defined by the decision-theoretic optimum derived under a risk-averse stance. A
simple way to characterize this difference is as follows: the risk-neutral solution maximizes the expectation of
stationary yield, while the risk-averse solution maximizes the expectation of log-sustainable yield. Harmonic
mean is also used as a part of a precautionary control value for biomass-based control rules used by the U.S.
North Pacific Fishery Management Council [15]. Due to the inherent nonlinearity of the models, it is not
easy to compute these quantities, nor to obtain the stationary distribution associated to these models. This
can be done in one-dimensional biomass models, such as in [2] and [4], where the authors study respectively a
discrete- and continuous-time Schaefer population model with multiplicative noise for the biomass, for specific
probability distributions of the noise. The authors are able to derive explicit formulas for the stationary
distribution, and prove that the expected sustainable yield decreases as the variance of the noise increases.
The drawback of this formulation is that the information about the age-structure dissapears; the discussion
in [21] ilustrates the interest of considering an age-structured approach over a biomass approach.

In this article we are interested in the study of the long term behavior of a single-species fishery harvested
by several fleets and subject to environmental randomness that affects the recruitment. More specifically,
we want to derive optimal constant fishing strategies that maximize the expected long term yield. To this
purpose, we model the time evolution of the fishery by a discrete time non-linear stochastic age-structured
population model with a plus group, where the recruitment is given by a Beverton-Holt spawner-recruitment
function. We introduce the concepts of maximum expected stationary yield (MESY), maximum expected
log-sustainable yield (MELSY), and maximum expected harmonic sustainable yield (MEHSY), and illustrate
the case of the Patagonian toothfish population in Chilean and Argentinean fisheries, comparing the different
reference points with the deterministic maximum sustainable yield (MSY) and among them. Via numerical
simulations we show that the coefficient of variation has a negative effect on any of the maximum expected
reference points, which advises to be more cautious if large levels of variability on recruitment are present in
the fishery, and that the deterministic MSY cannot be attained in presence of environmental noise. These
results confirm the theoretical results obtained in [2] for biomass-based models.

This article is organized as follows: In Section 2.1 we define the deterministic age-structured model and
investigate properties of its equilibrium values depending on fishing mortality. In Section 2.2 we introduce a
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stochastic term to the recruitment function, leading to a stochastic age-structured model, and we define the
mentioned expected yield measures. In Section 3 we show the results of numerical simulations for both the
deterministic and stochastic model, and we give estimates of these yield measures, showing the relevance of
accounting for variability in the model.

2 Materials and methods

2.1 Preliminaries and Deterministic Model
Consider a model of a fishery comprised of n fleets f = {1, . . . , n}. The fish population contains individuals
of ages a ∈ {1 . . . , A − 1, A}, in which A is the age category of individuals of A or more years, called a
plus group. The age at which individuals reach 50% maturity is at a = r, and the proportion of mature
individuals at age a is denoted ma. The population within each age group is subject to a mortality that is
composed by a natural mortality and the effect of fishing exerted by the fleets. We denote byMa the natural
mortality rate by age a, and by Fa the full recruitment fishing mortality rate by age a. This mortality rate
is a linear function of the fishing effort F , that is, Fa =

∑n
f=1 Pfsf,aF , where Pf is the proportion of fishing

mortality exerted by fleet f and sf,a is the selectivity of fish of age a by fleet f . Note that, by convention,
maxa sf,a = 1.

Table 1: Notation used in the age-structured model
f fleet type, f ∈ {1, . . . , n}
a age category, a ∈ {1, . . . , A− 1, A}
Ma natural mortality by age
Pf proportion of fishing mortality of fleet f
F full recruitment fishing mortality
sf,a selectivity of fish of age a by fleet f

Fa = Fa(F ) =
∑n
f=1 Pfsf,aF fishing mortality at age a

Za = Za(F ) =Ma + Fa(F ) total mortality rate for age a
SSBt spawning stock biomass at time t
R̃t recruitment (at age a = r) at time t
Wa weight at age a
ma maturity at age a
R0 virginal recruitment

Total abundance N is considered as the sum of all individuals of ages r or more. The spawning stock
biomass (SSB) at the year t is composed by the individuals from the beginning of the year t that have
survived the proportion τ of the year until they spawn.

SSBt =

A∑
a=r

maWaNt,ae
−τZa . (1)

Recruitment to the population occurs at age r and is often the starting age at which data are collected.
It depends on the SSB of r years before.

R̃t = ϕ(SSBt−r). (2)

The function ϕ(·) represents a spawner-recruit function, of which the asymptotic Beverton-Holt and the
dome-shape Ricker are the most common. The Beverton-Holt equation is given by

ϕ(SSB) =
αSSB

β + SSB
. (3)
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(see, for instance, [17]), where α = 4hR0/(5h − 1) and β = B0(1 − h)/(5h − 1) is the virginal biomass
(unfished) and h is the steepness of stock-recruit relationship. The individuals of age a + 1 at a given year
t+1 are the individuals of age a that survived the year t. With the previous assumptions, the equations for
the age-structured deterministic population model are

Nt+1,1 = ϕ(SSBt), Nt+1,a+1 = Nt,ae
−Za , a = 1, . . . , A− 2, Nt+1,A = Nt,A−1e

−ZA−1 +Nt,Ae
−ZA . (4)

The previous equations can be put in matrix form as

Nt+1 = A(F )Nt +Bϕ(SSBt), (5)

where A(F ) is an age-structured Leslie matrix in which the first row has null entries and the off-diagonals
contain survival rates exp(−Za). In order to use this matrix formulation we place recruitment at r years
after their spawning; following [17, Section 7.4] we consider the natural mortalities of the first r − 1 groups
of juvenile individuals are null, this is, M1 = · · · = Mr−1 = 0, and the selectivities sf,1 = · · · = sf,r−1 = 0
for all fleets f = 1, . . . , n. To handle the plus group, it is further modified to take into account the survival
rate of the individuals that belong to the age category A, or,

A(F )a+1,a = e−Za(F ), a = 1, . . . , A− 1; A(F )A,A = e−ZA(F ),

and B = (1, 0, . . . , 0)>. The yield is given by the Baranov catch in weight equation:

Yt =

A∑
a=r

Wa
Fa
Za

(1− e−Za)Nt,a. (6)

A key role in the analysis of population dynamics is the concept of equilibrium. For the standard Leslie
matrix without including the plus group, these formulas were presented in [17, Section 7.4]. For this analysis,
we consider constant mortality rates Ma, selectivities sf,a, proportions of fishing mortalities Pf , and fishing
mortality F . Including the plus group, the equilibrium values N? = (N?

1 , . . . , N
?
A)
> and SSB? can be

computed in terms of N?
1 and the spawning potential ratio SPR? = SPR?(F ), defined as

SPR? :=

A−1∑
a=r

WamaLae−τZa +
WAmALA
1− e−ZA

e−τZA ,

where La = La(F ) is the cumulative survival at age a given by

La := exp

{
−
a−1∑
x=1

Zx

}
, a = 2, . . . , A, L1 := 1;

As in [5], the population at equilibrium can be characterized by the equations

N?
1 = ϕ(N?

1 SPR
?), N?

a = N?
1La, a = 2, . . . , A− 1, N?

A = N?
1

LA
1− e−ZA

. (7)

(a detailed deduction of previous formulas is stated in the Appendix A). Notice that the spawning stock
biomass SSB? and the abundances at equilibrium N? depend on N?

1 as well as on the fishing mortality F .
For the particular case of the Beverton-Holt spawner recruit function given in (3), we have

N?
1 = α− β

SPR?
, SSB? = αSPR? − β. (8)

The yield at equilibrium has an explicit formula, given by

Y ? = Y ?(F ) = N?
1

(
A−1∑
a=r

Wa
Fa
Za

(1− e−Za)La +WA
FA
ZA
LA

)
. (9)
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A condition for the equilibrium point to have ecological meaning is that SPR? ≥ β
α . Also, [18] showed

that a sufficient condition for stability of the equilibrium point is∣∣∣∣SPR∗ ∂ϕ(SSB?)∂SSB

∣∣∣∣ < 1. (10)

(see [17]). For the particular case of a Beverton-Holt spawner-recruit function of the form given in (3), the
previous condition is exactly equivalent to SPR? > β

α , this is, the condition of positivity of the equilibrium
SSB? (or, equivalently, positivity of N?

1 ).

Definition 1 We define the maximum sustainable yield Y ?MSY as the maximum yield at equilibrium (as a
function of the fishing mortality F ):

Y ?MSY := max
F≥0

Y ?(F ), (11)

where Y ?(F ) is given in (9). We denote FMSY as the fishing mortality that produces the maximum sustainable
yield, that is, Y ?MSY = Y ?(FMSY).

According to Proposition 2 in Appendix A, if SPR?(F = 0) > β
α , then there exists a value Fext > 0 such

that for every F > Fext the theoretical equilibrium Y ?(F ) is non-positive, meaning that the fishery reaches
its extinction. Then, the fishing mortality FMSY that achieves the maximum sustainable yield Y ?MSY belongs
to the interval [0, Fext].

2.2 Stochastic Model and Optimal Yield Measures
Fluctuations on fish populations naturally appear as effect of environmental variations such as temperature,
food availability, or reproductive success [20]. As in [5, 9, 18], we consider that the variability enters at the
level of the stock-recruitment relationship by introducing a modification in the recruitment function given by
a log-normal random variable at each time (see [9] for the discussion about this particular choice of noise).
The generalized model is

Nt+1 = A(F )Nt +Bϕ(SSBt)ωte
− 1

2CV
2

, (12)

where (ωt)t∈N is a sequence of independent and identically distributed lognormal random variables with
parameters µ = 0 and σ = CV (the coefficient of variation of the lognormal distribution) and independent
of N0. The term exp(−1/2CV 2) corrects for bias.

For each time t ≥ 0 and constant fishing effort F ≥ 0, the yield Yt(F ) (given by (6)) is a random variable.
As in the previous section, we aim to study the concept of maximum sustainable yield, but since yield is
now a random variable it is necessary to analyze its probability distribution, and some notions of mean
value. From now on, denote Y ?F as the stationary yield, that is, the yield under its stationary behavior,
whose probability distribution (that we denote fY ?

F
(·|F )) depends on the mortality F (that we assume to be

constant). Following [23], we introduce the following definitions:

Definition 2 Define Y ?ESY(F ) (resp. Y
?
ELSY(F ), Y

?
EHSY(F )) as the expected sustainable (resp. log-sustainable,

harmonic sustainable) yield at stationarity:

Y ?ESY(F ) := E(Y ∗F ) =
∫ ∞
y=0

yfY ?
F
(y|F )dy,

Y ?ELSY(F ) := exp {E(log(Y ∗F ))} = exp

{∫ ∞
y=0

log(y)fY ?
F
(y|F )dy

}
,

Y ?EHSY(F ) := E((Y ∗F )−1)−1 =

(∫ ∞
y=0

y−1fY ?
F
(y|F )dy

)−1
.

(13)
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We define the maximum expected sustainable (resp. log-sustainable, harmonic sustainable) yield Y ?MESY

(resp. Y ?MELSY, Y
?
MEHSY) as

Y ?MESY := max
F≥0

Y ?ESY(F ), Y ?MELSY := max
F≥0

Y ?ELSY(F ), Y ?MEHSY := max
F≥0

Y ?EHSY(F ). (14)

We denote by FMESY (resp. FMELSY, FMEHSY) the fishing mortality that attains the maximum expected
sustainable (resp. log-sustainable, harmonic sustainable) yield Y ?MESY (resp. Y ?MELSY, Y

?
MEHSY).

Remark 1 For any fixed F ≥ 0, we have the inequality Y ?EHSY(F ) ≤ Y ?ELSY(F ) ≤ Y ?ESY(F ). Indeed,
both inequalities are a consequence of Jensen’s inequality [11, Lemma 2.5]. This shows that the sustainable
yield measures previously defined express a different degree of neutrality or aversion to risk. Consequently,
Y ?MEHSY ≤ Y ?MELSY ≤ Y ?MESY.

3 Illustration: Patagonian toothfish
Patagonian toothfish (dissostichus eleginoides) is a fish species that lives in the southern Pacific and Atlantic
oceans (Figure 1). It was first researched as a potential fishery resource in Chile in the 1950s by exploratory
fishings at low depths [8, 14]. Thirty years later, this resource began to be caught as bycatch in trawl fisheries
developed around Kerguelen island, Patagonic platform and the South Georgia Islands. In the mid 1980s,
development of longlines that could be operated at low depths led to fishing in Chilean waters directed
towards adult individuals. Fishing activity quickly expanded to the Patagonic platform, South Georgia, and
Kerguelen. The high price of this product in the international market led to large increases in catch and
the exploration of new fishing grounds. According to FAO, and including only legal catches, landings in
CCAMLR and territorial waters, catches increased from less than 5.000 tons in 1983 to over 40.000 tons en
1992 [22].

In Argentina, the patagonian toothfish fishery followed a similar development, starting as bycatch in
trawl fisheries, and subsequently developing longline fisheries in Argentina as well as in Falklands. The
Argentinean fishery started in the 1990s and reached its peak in 1995 with 19.225 tons; since then, catches
have decreased. Longline fishing started in the Falklands as an experimental fishery in 1992 and became
established in 1994 [12]. The catch reached a maximum of 2.733 tons in 1994 and then it become stable in
the range of 1.200 - 1.800 tons.

Figure 1: Distribution of patagonian toothfish and Antarctic toothfish in the southern Pacific and Atlantic
Oceans. Source: ccamlr.org
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On the basis in recomendations of Instituto Nacional de Investigación y Desarrollo Pesquero de Argentina
(INIDEP), since the year 2000 the size of hooks is regulated, catches are documented, a minimum size limit
is in place, and there are minimum depths of operation and a protection area for young individuals.

The Chilean patagonian toothfish fishery is divided mainly in two zones: the north zone, between the
northern limit of the country (18◦21′) and parallel 47◦, is reserved exclusively for the artisanal fleet. In the
south zone (47◦S - 57◦S), the industrial fleet mainly operates.

The Argentinean patagonian toothfish fishery is comprised of two fleets distinguished by their rig-
ging/fishing gear used: the longline fleet started operating in 1990 and since its inception, has been a
directed fishery with an area of operation involving almost the entire ranges of the resource in the Argentina
platform. The longline fishery is responsible for the largest historic landing registered in 1995, from which
catches were significantly reduced by this fleet. The number of ships that make up the longline fleet has been
on a gradual decline from a peak of 25 in 1996 to 4 in 2013 [24]. The fleet operating with bottom trawling
began in the late 1980s. Because of the differential size distribution with depth exhibited by toothfish, and
because most of the trawl sets are made between 400 and 500 [m] deep, the trawl fleet mainly impacts the
juvenile fraction of the population. The catches of trawlers showed an increasing trend from 1999, which is
related to the exploration of new fishing areas and not to an increase in the resource abundance. Currently
this fleet is composed of 5 trawlers [24].

In Chile, in the year 2013, the new General Law of Fisheries and Aquaculture (Ley General de Pesca y
Acuicultura, LGPA) took effect. Regarding fisheries, the modifications to the law covered five fundamental
aspects: sustainability, industrial and artisanal fishery regulations, research, and audit. One of the main
aspects will be to keep or to rebuild the fishery to the maximum sustainable yield (MSY), considering the
biological characteristics of the exploited resources. It is important to have good estimate of MSY, which
can be used as a target or limit for the harvest control policy.

We model the Patagonian toothfish population as an age-structured population with a plus group at age
A = 30 years, and the age of recruitment r = 3 years. Spawning occurs at τ = 7/12 of the way through the
year. There are four fleets: Chilean Industrial fleet, Chilean Artisanal fleet, Argentinean longline fleet, and
Argentinean Artisanal fleet. First, we investigate the estimation of model parameters and outputs, including
the MSY for a deterministic system, that is, considering no effect of stochasticity, and then we investigate
how the introduction of stochasticity on recruitment affects the behavior of the system by estimating the
values of MESY, MELSY, and MEHSY.

For the numerical simulations, we consider data of the landings from 1978 to 2014 and the param-
eters estimated from stock assesment obtained from IFOP webpage (more details in [22]). The param-
eter values, obtained from [22], are M = 0.15, h = 0.6, R0 = 5309, B0 = 214009, which give as a
result α = 6370.8, β = 42801.8. Also, the proportions of fishing mortality of the different fleets are
P = (50.23%, 23.57%, 16.44%, 9.76%), so that the Chilean industrial fleet currently bytakes a majority
of the fish, followed by Chilean artisanal fleet, Argentinean longline fleet, and Argentinean artisanal fleet.
Selectivities are shown in Table 4 and initial conditions are shown in Table 5 in the Appendix B.

We consider a time horizon Tend = 200 years (time in which we can observe a steady behavior for the
deterministic trajectories). As a first step, we run simulations of the deterministic process (4). We define
a meshgrid in the interval [0, 1] with a step hd = 10−5, and for each value Fj in this meshgrid we compute
the theoretical equilibrium values N?(Fj), SSB?(Fj) and Y ?(F ) as given in equations (7), (8), and (9).
The obtained value F = FMSY that maximizes the sustainable yield is FMSY = 0.13 and the corresponding
maximum yield is Y ?MSY = 7324[tons] (see Figure 2). The simulated values match the theoretical values.
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Figure 2: Deterministic yield as function of fishing
mortality.

Figure 3: Deterministic SSB as function of fishing
mortality.

We can see that the yield reaches 0 at about Fext = 0.41. This coincides with the fact that for F > 0.41
the relation SPR(F ) > β

α is no longer satisfied, and then the corresponding theoretical equilibrium points
become negative (as well as the yield and SSB). This relations are shown in Figures 2-4.

Figure 4: Deterministic SPR as function of fishing mortality.

The expected values for the process with stochasticity in recruitment must be determined by numerical
simulations. In order to find FMESY, FMELSY, and FMEHSY, we search the optimal values for F in the interval
[0, Fext] by defining a meshgrid, and for each value Fj in the meshgrid we compute ν = 500.000 replications
for different values of CV , namely CV1 = 0.25, CV2 = 0.5, CV3 = 0.75, CV4 = 1, CV5 = 1.5 and CV6 = 2.
This number of replications is large enough to ensure that the confidence interval at 95% for YMESY is at
most of large 1% with respect to the mean value.

The values of yield at the final time for each replication k (for fixed CV and Fj) are denoted ykTend
. We

estimate the values Y ?ESY(F ), Y
?
ELSY(F ) and Y ?EHSY(F ) by the arithmetic, geometric, and harmonic means

of the final values of yield:

Ŷ ?ESY(F ) =
1

ν

ν∑
k=1

ykTend
, Ŷ ?ELSY(F ) = exp

{
1

ν

ν∑
k=1

log
(
ykTend

)}
, Ŷ ?EHSY(F ) =

(
1

ν

ν∑
k=1

1

ykTend

)−1
.

We search the value Ŷ ?MESY among the different values Ŷ ?ESY(Fj) (we proceed analogously for Ŷ ?MELSY

and Ŷ ?MEHSY). The results are shown in Table 2.
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Table 2: Values of maximum expected sustainable fishing effort, maximum expected sustainable yield, and
spawning stock biomass (in tons) for different values of CV .

CV = 0 CV = 0.25 CV = 0.5 CV = 0.75 CV = 1 CV=1.5 CV = 2
FMESY 0.130 0.130 0.129 0.127 0.123 0.111 0.091
FMELSY 0.130 0.130 0.128 0.125 0.120 0.103 0.078
FMEHSY 0.130 0.129 0.127 0.123 0.117 0.097 0.068
Ŷ ?MESY 7324 7310 7264 7173 7011 6373 5141
Ŷ ?MELSY 7324 7295 7194 6997 6659 5399 3409
Ŷ ?MEHSY 7324 7278 7125 6829 6339 4677 2458
SSBMESY 70775 70624 70717 70939 71601 72111 70944
SSBMELSY 70775 70624 71271 72073 73369 77489 81772
SSBMEHSY 70775 71173 71830 73225 75182 81787 91126

The maximum expected yield (in any of its possible measures) decreases as the variability of fish recruit-
ment increases. Also, the fishing mortality that produces the maximum expected sustainable yield decreases,
which can be taken as a sign to be more cautious when there is stochasticity in recruitment present (see
Table 2, as well as Figure 7). Also, for small values of CV the values FMESY, FMELSY, and FMEHSY are
close, but for large values of CV they become clearly different. The most conservative measure is FMEHSY,
and the least is FMESY, as expected from deterministic theory. Nevertheless, this behavior is not witnessed
in the SSB at the optimal fishing mortalities, but it is possible to conclude that under a highly cautious
behavior (FMEHSY), the expected SSB is by far larger than the deterministic SSB under high variability (for
CV = 2 it is a 28, 5% larger).

In Figure 5 we show the behavior of the estimators of the expected sustainable yield ŶESY(F ) as function
of F , for different values of CV . We can see that for each fixed F the estimated expected sustainable yield
values are decreasing with respect to CV , and extinction of biomass occurs for a larger range of fishing
mortality than in the deterministic case. The same type of behavior can be observed for the estimator of
the mean value of SSB, as Figure 6 shows:
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Figure 5: Yield as function of fishing mortality, for
different values of CV .

Figure 6: Spawning stock biomass as function of fish-
ing mortality, for different values of CV .

In Figures 7 and 8 the behavior of the mean trajectories that lead to the maximum expected yield and the
corresponding spawning stock biomass as function of time are compared to the corresponding deterministic
trajectories. If CV increases, the mean yield decreases from its deterministic value. This behavior is not
observed for SSB. Note that each trajectory is computed using the optimal fishing mortality FMESY(CV )
corresponding to the respective value of CV .
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Figure 9 shows the comparison of the probability density functions of yield (at the corresponding FMESY)
for different values of CV . In this figure the empirical probability density function in the interval [p2.5%, p95%]
(which is the interval in which is contained 95% of the final values of yield, with tails of 2.5% of the values) is
shown. As the figure shows, if the coefficient of variation CV increases, the yield distribution becomes more
spread and moves to the left, and so do its mean values. The size of the confidence intervals also increases
with CV , showing the necessity to consider more conservative yield measures under high volatility.
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Figure 9: Probability density function of stationary yield, for different values of CV .

In Figure 10 we show a comparison between the deterministic, arithmetic and geometric means of the
yield as functions of the fishing mortality F . For small values of CV , the differences are not too notorious,
but for large values of CV they become apparent, both in the optimal mean values and in the optimal fishing
mortality.

In Table 3 and Figure 11 the behavior of the yield and spawning stock biomass are shown for the different
maximum yield measures, as well as their behavior with the current fishing mortality Fcurrent = 0.292, for
different values of CV . If the current fishing mortality is maintained, it leads to small values of equilibrium
yield compared to the maximum sustainable yield; this situation becomes critical when there is high volatility
in the recruitment (this is, for large values of CV ), as shown in Figures 12-13. Indeed, Figure 12 emphasizes
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Figure 10: Comparison between deterministic, arithmetic and geometric yield. On the left, for CV = 0.5,
on the right, CV = 2.

that any of the optimal constant fishing mortalities studied in this paper has a better performance in the
equilibrium than the current fishing mortality for large levels of volatility. The same can be checked for
the time evolution of SSB. In both cases the application of the current fishing mortality leads to a slow
but constant decrease of the yield and SSB levels, concluding that overexploitation can lead to extinction,
whereas the application of an optimal fishing mortality can maintain accepable levels of population even in
scenarios with high volatility.

Table 3: Equilibrium values of yield and
SSB (in tons) for the current fishing
mortality Fcurrent = 0.292, for different
values of CV

CV Mean Yield Mean SSB
0 4223 17699

0.25 4192 17569
0.5 4094 17157
0.75 3890 16303
1 3544 14852
1.5 2290 9603
2 827 3474

Figure 11: Yield (in tons) as function of CV for the
current fishing mortality Fcurrent = 0.292, compared
with the optimal yield measures
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Figure 12: Yield measures for CV = 2. Figure 13: SSB for different yield measures, for
CV = 2.

4 Discussion
Maximum sustainable yield is an important biological reference point that can be used to assess the status
of fisheries and develop regulations as well as harvest control rules, and its estimation can be highly affected
by the age structure of a fish population, and by multiple types of uncertainty, so biomass-based models
and deterministic models are not accurate enough to compute the biological reference points associated to
the respective fishery. In this work we propose to consider a mathematical model consisting in a stochastic
single-species age-structured model for fisheries composed by several fleets that accounts for environmental
and biological variability, and we extend the concept of MSY to the stochastic case via the concepts of MESY,
MELSY, and MEHSY, that can be used as reference points provided that some degree of volatility is witnessed
in the catches. We showed that this stochastic model could be applied to the study of the Patagonian
toothfish fishery (Chilean and Argentinean stock), computing via numerical simulations using Monte Carlo
method the maximum (constant) fishing mortalities FMESY, FMELSY, FMEHSY for small and large volatility
levels, and comparing them with the optimal deterministic fishing mortality FMSY (theoretically obtained),
concluding:

• Yield is more variable and its mean value is smaller as the coefficient of variation increases. This fact
needs to be considered when constructing confidence intervals for the maximum expected sustainable
yields.

• The maximum expected yields and optimal fishing mortalities decrease as the variability of fish re-
cruitment increases, showing us the need to be more cautious when there is stochasticity present in
recruitment.

• For small volatility levels, the differences between MESY, MELSY, and MEHSY are not big, whereas
for large levels of volatility they become apparent, in both the optimal mean values and the optimal
fishing mortality. This is particularly important since fishing mortalities that allow a fishery to survive
in the deterministic setting can be levels of overexploitation that lead to the extinction of the resource
for high levels of volatility.

Moreover, the deterministic MSY is unlikely to be reached since volatility naturally occurs, and accurate
methods to estimate this volatility are needed to asses the maximum expected yields and fishing mortalities.
In this work we show that in order for sustainable harvest to occur, proper accounting of stochasticity in
recruitment dynamics is mandatory. Conversely, not accounting for stochasticity in recruitment dynamics
can lead in the worst case to extinction. Consequently, stochastic models should be used to develop regulation
policies, especially for overexploited species in need of rebuilding. This is particularly important for decision
makers at government management agencies.
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Appendix

A Adjustment of equilibrium equations for a plus group
Consider the equations for an age-structured dynamic with a plus group as in system (4), written in short
form as in (5). For the computation of the equilibrium we solve the equation

N? = A(F )N? +Bϕ(SSB?), (15)

which translates to the equations

N?
1 = ϕ(SSB?), N?

a+1 = N?
ae
−Za , a = 1, . . . , A− 2, N?

A = N?
A−1e

−ZA−1 +N?
Ae
−ZA ,

with

SSB? =

A∑
a=r

maWaN
?
ae
−τZa (16)

A recurrence formula for the abundances N?
a+1 can be derived, which depends on N?

1 , for a = 2, . . . , A− 1:

N?
a = N?

a−1e
−Za−1 = N?

a−2e
−Za−2e−Za−1 = · · · = N?

1

a−1∏
x=1

e−Zx . (17)

For the plus group, we have

N?
A =

e−ZA−1

1− e−ZA
N?
A−1 =

∏A−1
x=1 e

−Zx

1− e−ZA
N?

1 (18)

Define the cumulative survival La and the spawning potential ratio SPR? as

La =

a−1∏
x=1

e−Zx = exp

{
−
a−1∑
x=1

Zx

}
, L1 = 1, (19)

SPR? =

A−1∑
a=r

WamaLae−τZa +
WAmALA
1− e−ZA

e−τZA . (20)

Replacing (17) and (18) in (16), we obtain

SSB? = N?
1 SPR

?. (21)

where N?
1 solves the nonlinear equation:

N?
1 = ϕ(N?

1 SPR
?). (22)

Summarizing, the abundances at equilibrium solve

N?
1 = ϕ(N?

1 SPR
?), N?

a = N?
1La, a = 2, . . . , A− 1, N?

A = N?
1

LA
1− e−ZA

.

With the previous values for N∗, the yield at equilibrium is function of the number of recruits N?
1

Y ? =

A∑
a=r

Wa
Fa
Za

(1− e−Za)N?
a = N?

1

(
A−1∑
a=r

Wa
Fa
Za

(1− e−Za)La +WA
FA
ZA
LA

)
. (23)
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Remark 2 The spawning potential ratio SPR? represents the quantity of spawning stock biomass produced
by one unit of recruits.

We can write SPR? in a simpler form. Defining

M̃a =

a−1∑
x=1

Mx + τMa, and S̃a =

n∑
f=1

Pf

(
a−1∑
x=1

sf,x + τsf,a

)
,

we have

SPR?(F ) =

A−1∑
a=r

Wamae
−M̃ae−S̃aF +WAmA

e−M̃Ae−S̃AF

1− e−MAe−
∑n

f=1 Pfsf,AF
. (24)

Proposition 1 The function F 7→ SPR?(F) is decreasing and converges to 0 as F goes to infinity.

Proof. The derivatives of Za and La with respect to F are

∂Za(F )

∂F
=

n∑
f=1

sf,aPf ,
∂La(F )
∂F

= −La
n∑
f=1

a−1∑
x=1

sf,xPf . (25)

We compute the derivative of SPR? (given in (24)) with respect to F , using (25):

∂SPR?(F )

∂F
= −

A−1∑
a=r

WamaLae−τZa

 n∑
f=1

Pf

(
psf,a +

a−1∑
x=1

sf,x

)
− WAmA

(1− e−ZA)2
LAe−pZA


n∑
f=1

Pf

[(
psf,A +

A−1∑
x=1

sf,x

)
(1− e−ZA) + e−ZAsf,A

] ,

which is negative for all values of F , thus proving that F 7→ SPR?(F ) is decreasing. For the second statement,
we take limits in (24) when F →∞ and we see that both terms of the right-hand side converge to zero.

The equilibrium spawning potential ratio SPR? is maximized in F = 0:

SPR?(0) =

A−1∑
a=r

Wamae
−M̃a +WAmA

e−M̃A

1− e−MA
. (26)

This value is important for the existence of a positive equilibrium value of the equilibrium abundances. For
the particular case of a Beverton-Holt spawner-recruit function of the form

ϕ(SSB) =
αSSB

β + SSB
, (27)

the equilibrium SSB? and abundance N?
1 are

SSB? = αSPR? − β, N?
1 = α− β

SPR?
.

Then, a condition for the existence of F ≥ 0 such that the corresponding equilibrium point is positive is that

SPR?(0) =

A−1∑
a=r

Wamae
−M̃a +WAmA

e−M̃A

1− e−MA
>
β

α
. (28)

This condition is completely related to the capacity of the fish population to survive in the environment. We
conclude the following proposition:
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Proposition 2 Suppose that the spawner-recruit function is of the form (27) and that condition (28) is
satisfied. Then, there exists a value Fext > 0 that solves the equation

SPR?(Fext) =
β

α
, (29)

and then F ?MSY belongs to the interval [0, Fext].

Proof. Consider the function g(F ) := SPR?(F )− β
α . This is a continuous and differentiable function, since

F 7→ SPR?(F ) is continuous and differentiable. Thanks to (28) we have g(0) > 0; from Proposition 1 we see
that F 7→ g(F ) is decreasing and limF→∞ g(F ) = −β

α < 0. By the intermediate value theorem there exists
then a point Fext such that g(Fext) = 0, or equivalently, (29) is satisfied. The fact that F ?MSY ∈ [0, Fext] is
concluded because for any F > Fext the value of equilibrium of SSB?(F) and N?

1 (F ) are negative, leading to
negative equilibrium yield from the formula (23).

B Parameters
In this section we present the values of the parameters that are too long to be detailed in the main body
of the paper. The selectivity by age and fleet is given in Table 4. In Table 5 we show the initial condition
for the model. Since the recruitment at a given year depends of the spawning stock biomass of the previous
year, we should take as initial condition the data corresponding to the last year of the measurements. Here,
N−2 shows the abundance by age (in millions) for the year 2012, N−1 corresponds to year 2013 and N0

corresponds to year 2014, and N−2 and N−1 are used to estimate the initial abundances for ages 1 and 2 for
N0. In Table 6 we show the values of weight, maturity, and natural mortality considered for the numerical
simulations.

Table 4: Selectivity by age and fleet from Tascheri and Canales [22].
Age (a) Fleet 1 Fleet 2 Fleet 3 Fleet 4 Age (a) Fleet 1 Fleet 2 Fleet 3 Fleet 4

1 0 0 0 0 16 0.6347 0.3589 1.0000 1.0000
2 0 0 0 0 17 1.0000 0.3589 1.0000 1.0000
3 0.0002 0.0032 0.0008 0.0379 18 1.0000 0.3589 1.0000 1.0000
4 0.0008 0.0113 0.0025 0.0600 19 1.0000 0.3589 1.0000 1.0000
5 0.0032 0.0427 0.0076 0.0946 20 1.0000 0.3589 1.0000 1.0000
6 0.0128 0.1969 0.0227 0.1493 21 1.0000 0.3589 1.0000 1.0000
7 0.0468 0.7109 0.0658 0.2372 22 1.0000 0.3589 1.0000 1.0000
8 0.1051 1.0000 0.1829 0.3766 23 1.0000 0.3589 1.0000 1.0000
9 0.1491 0.8079 0.4390 0.5757 24 1.0000 0.3589 1.0000 1.0000
10 0.1776 0.5793 0.7773 0.7980 25 1.0000 0.3589 1.0000 1.0000
11 0.2103 0.4176 0.9813 0.9562 26 1.0000 0.3589 1.0000 1.0000
12 0.2904 0.3589 1.0000 1.0000 27 1.0000 0.3589 1.0000 1.0000
13 0.3689 0.3589 1.0000 1.0000 28 1.0000 0.3589 1.0000 1.0000
14 0.4262 0.3589 1.0000 1.0000 29 1.0000 0.3589 1.0000 1.0000
15 0.4822 0.3589 1.0000 1.0000 30+ 1.0000 0.3589 1.0000 1.0000

Table 5: Initial abundances (in millions) from Tascheri and Canales [22].
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Age (a) N−2 N−1 N0 Age (a) N−2 N−1 N0

1 * * 2742.5 (est) 16 131.8 138.6 171.9
2 * * 2847.4 (est) 17 111.4 92.1 97.3
3 1889.4 2492.1 2993.9 18 71.5 72.3 59.0
4 1314.6 1623.5 2141.4 19 51.1 46.4 46.3
5 1407.7 1127.8 1392.9 20 30.1 33.2 29.7
6 1467.0 1202.5 963.9 21 25.6 19.5 21.3
7 1499.2 1231.7 1012.5 22 18.9 16.6 12.5
8 1189.8 1188.9 985.8 23 17.5 12.3 10.6
9 735.4 902.3 910.5 24 11.3 11.4 7.9
10 516.7 554.3 685.7 25 8.9 7.3 7.3
11 541.1 386.7 416.4 26 5.8 5.8 4.7
12 477.0 404.0 287.5 27 4.6 3.8 3.7
13 429.4 354.7 298.7 28 2.9 3.0 2.4
14 324.5 317.3 261.1 29 2.1 1.9 1.9
15 192.5 237.4 232.2 30+ 10.5 8.2 6.5

Table 6: Weight, maturity, and natural mortality by age, from Tascheri and Canales [22].

Age (a) Weight Maturity Natural mortality Age (a) Weight Maturity Natural mortality
1 0 0 0 16 17.5183 0.99 0.15
2 0 0 0 17 18.8940 0.99 0.15
3 1.1123 0.01 0.15 18 20.5717 1 0.15
4 1.2620 0.02 0.15 19 21.8620 1 0.15
5 1.5820 0.03 0.15 20 24.6300 1 0.15
6 2.4400 0.06 0.15 21 26.1187 1 0.15
7 3.4893 0.11 0.15 22 28.0610 1 0.15
8 4.8843 0.21 0.15 23 29.1047 1 0.15
9 6.5013 0.34 0.15 24 31.1807 1 0.15
10 8.4117 0.51 0.15 25 33.3417 1 0.15
11 10.0500 0.68 0.15 26 35.9160 1 0.15
12 11.3690 0.81 0.15 27 35.9857 1 0.15
13 12.8947 0.90 0.15 28 43.1203 1 0.15
14 14.6080 0.95 0.15 29 43.4607 1 0.15
15 16.1203 0.97 0.15 30+ 51.8067 1 0.15
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