
A. Background to stock assessment
B. What is the problem?
C. Estimating depredation
D. Summary

A. Background to stock assessment

Biological production of population: Change in biomass

Population next year $=$ Population this year + births + growth - deaths (Population growth)
(Biological production)
Population next year $=$ population this year + recruits + growth - (natural deaths + fishing deaths $)$

$$
B_{t+1}=B_{t}+R+G(-M-F)
$$

A. Background to stock assessment

Biological production of population: Change in biomass

Natural mortality

Fishing

 mortality

- Age
- Predation
- Sickness

Catch

- ...
- Damage
B. What is the problem?
- Not including depredation == underestimating mortality
- Underestimating mortality $==$ bias in stock assessment
- Bias in stock assessment == higher uncertainty
- Higher uncertainty == greater risk to stock

CCAMLR

CCAMLR decision rules
Non-CCAMLR: What are the safeguards? Tier systems, safety margins, none?

Data collection:

CCAMLR standard observer and vessel protocols
Collect: environmental, fishing, effort, operational, temporal and spatial data, standard across all CCAMLR areas

Observers collect biological data on target species and observations of mammals, birds: time, species, number, feeding: Standard across all CCAMLR areas

Some areas: extra data - Photography (population estimates, movements, culprit ID) standardised protocol available, behaviour, crew observations

Cryptic depredation: Guide to signs of depredation on toothfish at CCAMLR 2015 available for use

Theory:
Most (significant) depredators are depth-limited

Over given window (spatial/temporal):

- Calculate catch (CPUE) with and without presence/feeding of depredators
- Account for operational, spatial and temporal variables
- Difference gives estimation of catch loss due to depredation
- Include loss into stock assessment

C. Estimating depredation

CCAMLR: All depredation-affected stock assessments estimate externally

- Statistical modelling
- Gasco method (see presentation N. Gasco)
48.3

Included since 2009 routinely
Estimation model review in 2013 (glm, gam, glmm, gamm)

Average estimation: ~ 5\%

Kerguelen/Crozet

Included since 2014 for Crozet
Used model: safety margin Model in prep (time series)

Average estimation: ~ 5\% Kerguelen ~ 30\% Crozet

Ob \& Lena

Included since 2015
Used model: glm and Gasco bycatch (similar)

Average estimation: $\sim 4 \%$ and ~25\%

Assessment output

- Depredation is an additional mortality to the stock
- Not including depredation == higher uncertainty
- Currently in CCAMLR: Depredation estimated externally to stock assessment calculation
- Catches corrected (?), CPUE standardised
- Different models used in different regions; need for comparability (CCAMLR review)
- 'Lessons learned’ help other Subareas facing new depredation problem

2
Centre for Environment Fisheries \& Aquaculture

